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Abstract
We consider a set of functions on the Poisson manifold related by a continuous
one-parameter group of transformations. A class of vector fields that produce
involutive families of functions is investigated and the relationship between
these vector fields and non-Noether symmetries of Hamiltonian dynamical
systems is outlined. The theory is illustrated with two examples: a modified
Boussinesq system and a Broer–Kaup system.
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Mathematics Subject Classification: 70H33, 70H06, 58J70, 53Z05, 35A30

Involutive orbits

In Hamiltonian integrable models, conservation laws often form an involutive orbit of the
one-parameter symmetry group. Such a symmetry carries important information about the
integrable model and its bi-Hamiltonian structure. This paper is an attempt to describe a class
of one-parameter groups of transformations of the Poisson manifold that possess involutive
orbits and may be related to Hamiltonian integrable systems [3, 8, 11].

Let C∞(M) be an algebra of smooth functions on a manifold M equipped with Poisson
bracket

{f, g} = W(df ∧ dg) (1)

where W is a Poisson bivector field. Each vector field E on the manifold M gives rise to the
one-parameter group of transformations of C∞(M) algebra

gz = ezLE (2)

where LE denotes the Lie derivative along the vector field E. To any smooth function
J ∈ C∞(M) this group assigns an orbit that goes through J

J (z) = gz(J ) = ezLE (J ) = J + zLEJ + 1
2z2(LE)2J + · · · (3)

the orbit J (z) is called involutive if

{J (x), J (y)} = 0 ∀x, y ∈ R (4)
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(throughout this paper R denotes the set of real numbers, while N stands for positive integers).
Involutive orbits are often related to the integrable models where J (z) plays the role of the
involutive family of conservation laws.

Involutivity of orbit J (z) depends on the nature of the vector field E and the function
J = J (0) and in general it is hard to describe all pairs (E, J ) that produce the involutive
orbits. However one interesting class of involutive orbits can be outlined by the following
theorem:

Theorem 1. For any non-Poisson (LEW �= 0) vector field E satisfying property

L2
EW = 0 (5)

and any function J such that

W(dLEJ ) = cLE(W)(dJ ) c ∈ R \ (0 ∪ N) (6)

one-parameter family of functions J (z) = ezLE (J ) is involutive.

Proof. By taking the Lie derivative of property (6) along the vector field E we get

LE(W)(dLEJ ) + W(d(LE)2J ) = cL2
E(W)(dJ ) + cLE(W)(dLEJ ) (7)

where c is a real constant which is neither zero nor a positive integer. Taking into account (5)
one can rewrite the result as follows:

W(d(LE)2J ) = (c − 1)LE(W)(dLEJ ) (8)

that after m iterations produces

W(d(LE)m+1J ) = (c − m)LE(W)(d(LE)mJ ). (9)

Now using this formula let us prove that the functions J (m) = (LE)mJ are in involution.
Indeed

{J (k), J (m)} = W(dJ (k) ∧ dJ (m)). (10)

Assuming that k > m let us rewrite the Poisson bracket as follows:

W(dJ (k) ∧ dJ (m)) = W(d(LE)kJ ∧ dJ (m)) = LW(d(LE)kJ )J
(m)

= (c − k + 1)LLE(W)(d(LE)k−1J )J
(m)

= (c − k + 1)LE(W)(dJ (k−1) ∧ dJ (m))

= −(c − k + 1)LLE(W)(d(LE)mJ )J
(k−1)

= −c − k + 1

c − m
LW(d(LE)m+1J )J

(k−1)

= c − k + 1

c − m
W(dJ (k−1) ∧ dJ (m+1)). (11)

Thus we have

(c − m){J (k), J (m)} = (c − k + 1){J (k−1), J (m+1)}. (12)

Using this formula 2(m − k) times produces

{J (k), J (m)} = {J (m), J (k)} (13)

and since the Poisson bracket is skew-symmetric we finally get

{J (k), J (m)} = 0. (14)

Thus functions J (m) = (LE)mJ are in involution. At the same time the orbit J (z) is a linear
combination of the functions J (m) and thus it is involutive as well. �
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Remark 1. Note that if L2
E(W) = 0 then LE(W) is a Poisson bivector field compatible with

W (see [1, 4, 5, 12, 13]). Moreover [12], for a given Poisson bivector field W the bivector field
LEW is Poisson (and automatically compatible with W ) if and only if the Schouten bracket
of L2

E(W) and W vanishes.

Remark 2. Formula (9) implies that the vector field

S = (c − m)E + t (c − m + 1)W(dJ (m+1)) (15)

is of non-Noether symmetry [2, 9] of the Hamiltonian dynamical system

d

dt
f = {J (m), f }. (16)

In other words non-Poisson vector field S commutes with time evolution defined by the
Hamiltonian vector field

X = ∂

∂t
+ W(dJ (m)). (17)

This fact can be checked directly

[S,X] = (c − m)[E,X] + t (c − m + 1)[W(dJ (m+1)),W(dJ (m))] − (c − m + 1)W(dJ (m+1))

= (c − m)LE(W)(dJ (m)) + (c − m)W(dLEJ (m))

+ t (c − m + 1)W(d{J (m+1), J (m)}) − (c − m + 1)W(dJ (m+1))

= W(dJ (m+1)) + (c − m)W(dJ (m+1)) − (c − m + 1)W(dJ (m+1)) = 0. (18)

In a similar manner one can show that

[X, [X,E]] = 0 (19)

and thus E is a master symmetry [10] of the Hamiltonian system (16). Note also that
formula (9) means that functions J (m) = (LE)mJ form a Lenard scheme with respect to the
bi-Hamiltonian structure formed by Poisson bivector fields W and LEW .

In many infinite-dimensional integrable Hamiltonian systems the Poisson bivector has
nontrivial kernel, and a set of conservation laws belongs to the orbit of non-Noether symmetry
group that goes through the centre of the Poisson algebra. This fact is reflected in the following
theorem (the theorem follows from the result of example 3.1.7 of [4], in this paper an alternative
proof is suggested):

Theorem 2. If non-Poisson vector field E satisfies property

L2
EW = 0 (20)

then every orbit derived from centre I of Poisson algebra C∞(M) is involutive.

Proof. If function J belongs to centre J ∈ I of Poisson algebra C∞(M) then by definition
W(dJ ) = 0. By taking the Lie derivative of this condition along vector field E one gets

W(dLEJ ) = −LE(W)(dJ ) (21)

that according to theorem 1 ensures involutivity of the J (z) orbit. �
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Modified Boussinesq system

The theorems stated above may have an interesting applications in the theory of infinite-
dimensional Hamiltonian models where they provide a simple way to construct involutive
families of conservation laws. One non-trivial example of such a model is a modified
Boussinesq system [6, 14, 15] described by the following set of partial differential equations:

ut = cvxx + uxv + uvx vt = −cuxx + uux + 3vvx (22)

where u = u(x, t), v = v(x, t) are smooth functions on R
2 subjected to the zero boundary

conditions

lim
x→∞ xmDr

xu(x, t) = lim
x→∞ xmDr

xv(x, t) = 0 ∀m, r ∈ R. (23)

This system can be rewritten in the Hamiltonian form

d

dt
f = {h, f } = W(dh ∧ df ) (24)

with the following Hamiltonian:

h = 1

2

∫ +∞

−∞
(u2v + v3 + 2cuvx) dx (25)

and a Poisson bracket defined for any smooth functionals K,L by

{K,L}W = W(dK ∧ dL) =
∫ +∞

−∞

(
δK
δu

Dx

(
δL
δu

)
+

δK
δv

Dx

(
δL
δv

))
dx (26)

where δ
δu

denotes a variational derivative with respect to u. For Poisson bivector defined by
(26) there exists a vector field E such that

L2
EW = 0. (27)

The vector field has the following form:

E = −(uv + 2cvx + x((uv)x + cvxx))
∂

∂u
− (u2 + 2v2 − 2cux + x(uux + 3vvx − cuxx))

∂

∂v
.

(28)

Applying the one-parameter group of transformations generated by this vector field to the
centre of the Poisson algebra which in our case is formed by the functional

J =
∫ +∞

−∞
(ku + mv) dx (29)

where k,m are arbitrary constants, produces an involutive orbit that recovers the infinite
sequence of conservation laws of the modified Boussinesq hierarchy

J (0) =
∫ +∞

−∞
(ku + mv) dx

J (1) = LEJ (0) = m

2

∫ +∞

−∞
(u2 + v2) dx

J (2) = (LE)2J (0) = m

∫ +∞

−∞
(u2v + v3 + 2cuvx) dx (30)

J (3) = (LE)3J (0) = 3m

4

∫ +∞

−∞

(
u4 + 5v4 + 6u2v2 − 12cv2ux + 4c2u2

x + 4c2v2
x

)
dx

J (r) = (LE)rJ (0) = LEJ (r−1).
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Broer–Kaup system

Another interesting model that has an infinite sequence of conservation laws lying on a single
orbit of the non-Noether symmetry group is the Broer–Kaup system [7, 14, 15] or more
precisely a special case of the Broer–Kaup system formed by the following partial differential
equations:

ut = cuxx + 2uux vt = −cvxx + 2uvx + 2uxv (31)

where u = u(x, t), v = v(x, t) are again smooth functions on R
2 subject to the zero boundary

conditions

lim
x→∞ xmDr

xu(x, t) = lim
x→∞ xmDr

xv(x, t) = 0 ∀m, r ∈ R. (32)

Equations (31) can be rewritten in the Hamiltonian form

d

dt
f = {h, f } = W(dh ∧ df ) (33)

with the Hamiltonian equal to

h =
∫ +∞

−∞
(u2v + cuxv) dx (34)

and the Poisson bracket defined by

{K,L}W = W(dK ∧ dL) =
∫ +∞

−∞

(
δK
δu

Dx

(
δL
δv

)
+

δK
δv

Dx

(
δL
δu

))
dx. (35)

One can show that the following vector field E:

E = −(u2 + 2cux + x(2uux + cuxx))
∂

∂u
− (3uv − 2cvx + x(2(uv)x − cvxx))

∂

∂v
, (36)

has the property

L2
EW = 0 (37)

and thus the group of transformations generated by this vector field transforms the centre of
the Poisson algebra formed by the functionals

J =
∫ +∞

−∞
(ku + mv) dx (38)

into an involutive orbit that reproduces the well-known infinite set of conservation laws of the
modified Broer–Kaup hierarchy

J (0) =
∫ +∞

−∞
(ku + mv) dx

J (1) = LEJ (0) = m

∫ +∞

−∞
uv dx

J (2) = (LE)2J (0) = 2m

∫ +∞

−∞
(u2v + cuxv) dx (39)

J (3) = (LE)3J (0) = 3m

∫ +∞

−∞
(2u3v − 3cu2vx − 2c2uxvx) dx

J (r) = (LE)rJ (0) = LEJ (r−1).
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Generalized modified Boussinesq system

The two examples discussed above are representatives of one interesting family of the infinite-
dimensional Hamiltonian systems formed by D partial differential equations of the following
type:

Ut = −2FGUxx + 〈U,GUx〉C + 〈C,GUx〉U + 〈C,GU 〉Ux

det G �= 0, GT = G, FT = −F

FmnCk + FkmCn + FnkCm = 0 (40)

where U is the vector with the components um that are smooth functions on R
2 subject to the

zero boundary conditions

lim
x→∞ xmDr

xuk(x, t) = 0 ∀m, r ∈ R, k = 1, . . . , D. (41)

G is a constant symmetric nondegenerate matrix, F is a constant skew-symmetric matrix, C is
a constant vector that satisfies the condition

FmnCk + FkmCn + FnkCm = 0 (42)

and 〈,〉 denotes the scalar product

〈X, Y 〉 =
D∑

m=1

XmYm. (43)

The system of equations (40) is Hamiltonian with respect to the Poisson bivector defined by

{K,L}W = W(dK ∧ dL) =
∫ +∞

−∞

〈
δK
δU

,G−1Dx

(
δL
δU

)〉
dx (44)

where δ
δU

is a vector formed by the variational derivative δ
δum

. Moreover this model is actually
bi-Hamiltonian as there exists another invariant Poisson bivector

{K,L}Ŵ = Ŵ (dK ∧ dL)

=
∫ +∞

−∞

(〈
C,

δK
δU

〉 〈
U,Dx

(
δL
δU

)〉
+

〈
U,

δK
δU

〉 〈
C,Dx

(
δL
δU

)〉

+

〈
Ux,

δK
δU

〉 〈
C,

δL
δU

〉
− 2

〈
δK
δU

, FD2
x

δL
δU

〉)
dx (45)

that is compatible with W . Corresponding Hamiltonians that produce bi-Hamiltonian
realization

d

dt
U = Ŵ (dĤ ∧ dU) = W(dH ∧ dU) (46)

of the evolutionary equations (40) are

Ĥ = 1

2

∫ +∞

−∞
〈U,GU 〉 dx (47)

and

H = 1

2

∫ +∞

−∞
{〈C,GU 〉〈U,GU 〉 + 2〈FGUx,GU 〉} dx. (48)

The most remarkable property of system (40) is that it possesses a set of conservation laws
that belong to the single orbit obtained from the centre of Poisson algebra via a one-parameter
group of transformations generated by the following vector field:

E = 〈C,GU 〉〈U, ∂U 〉 + 〈U,GU 〉〈C, ∂U 〉 + 4〈FGUx, ∂U 〉 + x(〈C,GUx〉〈U, ∂U 〉
+ 〈C,GU 〉〈Ux, ∂U 〉 + 〈U,GUx〉〈C, ∂U 〉 + 2〈FGUxx, ∂U 〉). (49)
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Note that the centre of Poisson algebra (with respect to the bracket defined by W ) is
formed by functionals of the following type:

J =
∫ +∞

−∞
〈K,U 〉 dx (50)

where K is an arbitrary constant vector and applying the group of transformations generated
by E to the functional J yields the infinite sequence of the functionals

J (0) =
∫ +∞

−∞
〈K,U 〉 dx

J (1) = LEJ (0) = 1

2
〈C,K〉

∫ +∞

−∞
〈U,GU 〉 dx

J (2) = (LE)2J (0) = 〈C,K〉
∫ +∞

−∞
{〈C,GU 〉〈U,GU 〉 + 2〈FGUx,GU 〉} dx

J (3) =(LE)3J (0) = 1

4
〈C,K〉

∫ +∞

−∞
{3〈C,GC〉〈U,GU 〉2 + 12〈C,GU 〉2〈U,GU 〉 + 32〈C,GU 〉

×〈GU,FGUx〉 + 24〈U,GU 〉〈GC,FGUx〉 + 48〈FGUx,GFGUx〉} dx

J (r) = (LE)rJ (0) = LEJ (r−1).

(51)

One can check that the vector field E satisfies the condition

L2
EW = 0 (52)

and according to theorem 2 the sequence J (m) is involutive. So J (m) are conservation laws of
bi-Hamiltonian dynamical system (40) and vector field E is related to non-Noether symmetries
of evolutionary equations (see remark 2).

Note that in the special case when C,F,G,K have the following form:

D = 2, F12 = −F21 = 1
2c, C = K = (0, 1), G = 1 (53)

model (40) reduces to the modified Boussinesq system discussed above. Another choice of
constants C,F,G,K

D = 2, F12 = −F21 = 1
2c, C = K = (0, 1)

G12 = G21 = 1, G11 = G22 = 0 (54)

gives rise to the Broer–Kaup system described in the previous example.

Conclusions

Groups of transformations of the Poisson manifold that possess an involutive orbit play an
important role in some integrable models where the conservation laws form an orbit of non-
Noether symmetry group. Therefore the classification of the vector fields that generate such a
group would create a good background for the description of a remarkable class of integrable
systems that have an interesting geometric origin. This paper is an attempt to outline one
particular class of the vector fields that are related to non-Noether symmetries of Hamiltonian
dynamical systems and produce an involutive family of conservation laws.
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